
Space charge in fixed-field rings
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MOVING FRAME
I The analysis is simpler and more elegant in the frame moving

with the beam centroid:

I Ignore acceleration phases to focus on beam dynamics due to
space charges



BEAM PHENOMA WE WOULD LIKE TO BETTER
UNDERSTAND



SPIRALING OF HIGH INTENSITY BEAMS

PSI Injector II

PICN (Adam) OPAL-CYCL (Adelmann et al.)



BREAKUP OF HIGH INTENSITY BEAMS

Small Isochronous Ring
(Pozdeyev et al.)

CYCIAE 100
(Bi et al.)



BEAM BREAKUP
Detailed results from E. Pozdeyev, J. A. Rodriguez, F. Marti, and R. C.
York, Phys. Rev. STAB 12, 054202 (2009).



BEAM BREAKUP
Detailed results from E. Pozdeyev, J. A. Rodriguez, F. Marti, and R. C.
York, Phys. Rev. STAB 12, 054202 (2009).

I Number of clusters independent of bunch density
I Number of clusters scales linearly with bunch length



DESCRIBING A NONNEUTRAL BEAM: A BRIEF SURVEY



METHOD I: SOLVING THE N-BODY PROBLEM

I An intuitive idea is to solve for the motion of all the particles
iteratively

I At each time step i, solve

m
d2xk

(i)

dt
= q

(
E(xk)(i−1) +

dxk
(i)

dt
× B(xk)

)
k = 1, . . . ,N

E(xk)(i) =

N∑
j=1
j 6=k

qk

4πε0

xk
(i) − xj

(i)

|xk
(i) − xj

(i)|3

I Use Fast Multipole Methodto evaluate the electric field in O(N)
operations1

I Still not feasible computationally large N– in the problems of
interest N ∼ 109 − 1015

1L. Greengard, V. Rokhlin, J. Comput. Phys. 73, 325 (1987)



METHOD II: COARSE-GRAIN AVERAGE IN PHASE

SPACE

I For very large N, replace discrete particles with smooth
distribution function f (x,v, t)

f (x,v, t)dxdv

is the expected number of particles in the infinitesimal volume
dxdv.



THE PARTICLE IN CELL (PIC) APPROACH

I Sample the distribution function f with P “superparticles”
fp(x,v, t)

f (x,v, t) =
∑

p

fp(x,v, t)

I Write fp(x,v, t) = NpSx(x− xp(t))Sv(v− vp(t))
S: shape functions for the “superparticle”
Np: number of physical particles in the “superparticle”

I fp evolves in time according to

dNp

dt
= 0

dxp

dt
= vp

dvp

dt
=

q
m
(
−∇φp + vp × B

)
∇2φp = − q

ε0

∑
p

NpSx(x− xp)

I Difference with discrete particle simulations: the fields and
trajectories are smooth



THE PARTICLE IN CELL (PIC) APPROACH

I Advantages:
I Intuitive: Newton-Maxwell system as in the discrete particle case
I Easier to parallelize than continuum methods
I Works well for high-dimensional problems

I Disadvantages:
I Does not yield much theoretical insights
I Statistical noise



MOMENT APPROACH

Vlasov equation:
∂f
∂t

+ v · ∇f +
q
m

(−∇φ+ v× B) · ∇vf = 0

I Taking the integrals
∫∫∫

dv,
∫∫∫

mvdv and
∫∫∫

mv2/2dv of this
equation, we obtain the exact fluid equations:

∂n
∂t

+∇ · (nV) = 0 Continuity

mn
(
∂V
∂t

+ V · ∇V
)

= en (−∇φ+ V× B)−∇ · P Momentum

d
dt

(
3
2

p
)

+
5
2

p∇ ·U + π : ∇U +∇ · q = 0 (Energy)

with p = pI + π.
I Closure problem: for each moment, we introduce a new

unknown ⇒ End up with too many unknowns
I Need approximation to close the moment hierarchy



CLOSURE FOR TWO-DIMENSIONAL BEAM DYNAMICS



IDENTIFYING SMALL PARAMETERS

∂f
∂t

+ v · ∇f +
q
m

(−∇φ+ v× B) · ∇vf = 0

I Simplify geometry: B = B0ez (uniform magnetic field)
I Normalize equation

∂f
∂t

+ v · ∇f +
1
ε

(
−δ

2

ε
∇φ+ v× ez

)
· ∇vf = 0

ε ≡ ρ

a
δ2 ≡

ω2
p

ω2
c

=
mn
ε0B2

I a: characteristic size of the beam
I ρ: Particle gyroradius in the moving frame

(related to the magnitude of the beam mismatch oscillations)
I All cyclotrons satisfy δ2 ≤ 1, and most satisfy δ2 � 1



DERIVING FLUID EQUATIONS FOR THE BEAM
I In general, ε = ρ/a . 1
I Focus on the regime ε ∼ δ � 1
I To lowest order in δ

∂f
∂t

+ v · ∇f +
1
ε

(
−δ

2

ε
∇φ+ v× ez

)
· ∇vf = 0

becomes
∴ (v× ez) · ∇vf = 0 + O(δ)

I The pressure tensor must then be diagonal2 to lowest order in δ:

P = p⊥I + (p‖ − p⊥)bb =

 p⊥ 0 0
0 p⊥ 0
0 0 p‖

+ O(δ)

I Closed fluid equations can then be derived for the 2D dynamics
in the plane perpendicular to the magnetic field2

2A.J. Cerfon et al., PRSTAB 16, 024202 (2013)



MULTIPLE TIME SCALE ANALYSIS
I δ � 1 means electrostatic force is much smaller than magnetic

force
I Time scale for particle gyration much shorter than time scale for

macroscopic evolution of the beam
I Situation lends itself to a multiple time scale analysis, in which

the dynamics is averaged over the fast cyclotron time scale2

I One finds the following equation for the space charge dynamics:

∂n
∂(δ2t)

+∇φ×ez · ∇n = 0

∇2φ = −n

I These equations describe the advection of the density profile in
the velocity field E× B/B2, the so-called E× B velocity

I Dynamics independent of the value of δ except for the time scale
of the observed phenomena

I Scaling linear with δ2, i.e. density, i.e. current (at fixed energy)



ISOMORPHISM WITH 2D EULER EQUATIONS
Beam vortex dynamics

∂n
∂t

+∇φ× ez · ∇n = 0

∇2φ = −n

n: bunch density; φ: electrostatic
potential

2D incompressible Euler

∂ω

∂t
+∇ψ × ez · ∇ω = 0

∇2ψ = −ω

ω: z-directed vorticity; ψ: stream
function for the flow

I Isomorphism recognized a long time ago in a slightly different
context3

I We proved that the isomorphism holds even for finite
temperature beams

I We can use decades old fluid dynamics results to
determine/understand the stability of bunch distributions

3C.F. Driscoll and K.S. Fine, Phys.Fluids B 2 1359 (1990)



EXPLAINING BEAM PHENOMENA



STABILITY OF ROUND BEAMS
I Radial density distributions automatically satisfy the equations
I Well-known results from fluid theory of radially symmetric

vortex patches:
I If n(r) is monotonically decreasing, the bunch is nonlinearly

stable to nonsymmetric density perturbations
I Hollow density profiles can be unstable to these perturbations

Gaussian n(r), δ2 = 0.8
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EXB ADVECTION
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ELLIPTIC BUNCHES WITH SMOOTH DENSITY PROFILE
I More complicated case. Answer depends on the smoothness of

the profile
I For reasonably smooth profile, “axisymmetrization principle”4

I Also known as “inviscid damping”, Euler analog of Landau
damping

4M.V. Melander, J.C. McWilliams and N.J. Zabusky, J. Fluid Mech. 178 (1987) 137



BEAM SPIRALING A.K.A AXISYMMETRIZATION

Our simulation
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3D PIC (OPAL) simulationa

aJ.J. Yang et al., Phys. Rev. ST AB 13 064201
I In PSI Injector II, formation of a round stable core after 40 turns

(good)
I In machines with lower δ2, core and halo take longer to form

Potentially bad situation if low density halo forms with high
energy



BEAM BREAKUP
Results from E. Pozdeyev, J. A. Rodriguez, F. Marti, and R. C. York,
Phys. Rev. STAB 12, 054202 (2009).



BEAM BREAKUP

I Number of clusters independent of bunch density
⇒ Automatic in our model

I Number of clusters scales linearly with bunch length
⇒ Consequence of shear inviscid instability



SHEAR INVISCID INSTABILITY

Figure: Linear and nonlinear instability of a compressible shear layer
described by the Navier Stokes equation5

5R.A. Coppola Germanos, L. Franco de Souza, M.A. Faraco de Medeiros, J. Braz.
Soc. Mech. Sci & Eng. 31, 125 (2009)



SHEAR INVISCID INSTABILITY

Radial direction
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I For simplicity, assume infinite
bunch in the y direction

I Use modal approach and
solve Rayleigh eigenvalue
equationa

aP.G. Drazin and W.H. Reid, Hydrodynamic Stability, Cambridge University
Press (1981)



SHEAR INVISCID INSTABILITY
I Rayleigh’s eigenvalue equation for a shear layer:

(Vy − ω)

(
d2φ̂

dx2 − k2φ

)
−

d2Vy

dx2 φ̂ = 0

I Solving this equation numerically, we find that the wave number
k with the largest growth rate is such that k ≈ 0.8 cm−1

I Agrees well with PIC observations for SIR



ELLIPTIC BUNCHES WITH UNIFORM DENSITY
I Classical case in fluid dynamics: uniform density profile

Call a the semi-major axis and b the semi-minor axis
I If a/b < 3, bunch is linearly and nonlinearly stable to edge

perturbations
If a/b > 3, bunch is linearly and nonlinearly unstable to edge
perturbations

I Instability is a potential mechanism for beam breakup

Uniform n, δ2 = 0.2, a/b = 20
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ONGOING WORK: GENERALIZING OUR MODEL



ARBITRARY TEMPERATURE/INITIAL CONDITIONS

∂f
∂t

+ v · ∇f +
1
ε

(
−δ

2

ε
∇φ+ v× ez

)
· ∇vf = 0

I We treated the case ε� 1; what happens when ε ∼ 1?

∂f
∂t

+ v · ∇f +
1
ε

v× ez · ∇vf = 0

I To lowest order, f = f (x, y, v⊥, ϕ)⇒ f is not independent of
gyrophase⇒ In principle, need to resolve betatron time scale

I Idea: (called gyrokinetics) Solve for distribution of gyrocenters
f̄ (R, v⊥, ϕ) where R = r + v× ez/ωc

I After transformation (r, v⊥, ϕ)→ (R, µ, ϕ), one finds

∂ f̄
∂ϕ

= 0 + O(δ)



GYROKINETICS FOR CYCLOTRON BEAMS

∂ f̄
∂t

+
q

mωc
b× 〈∇φ〉ϕ · ∇R f̄ = 0

∇2φ(r, t) =
ωc

ε0

∫∫
f̄ (r +

v⊥ × b
ωc

, µ, t)dµdϕ

I Problem is now 3D and kinetic⇒ slightly more complicated

I Thanks to gyroaveraging, only solve on space charge time scale

I A solver is being developed by NYU graduate student J.
Guadagni, and is almost fully written

I First results will be presented at APS-DPP meeting at the end of
October

I Next step: include spatial inhomogeneities for the magnetic field


